Dalamtopik ini kalian akan mempelajari daerah penyelesaian pertidaksamaan mutlak. Sebagai persiapan awal, mari kita ingat kembali konsep-konsep dasar untuk pertidaksamaan mutlak. Menentukan pertidaksamaan mutlak yang memenuhi daerah penyelesaian. -18 < x < 6. Jadi, himpunan penyelesaian dari pertidaksamaan di atas adalah . Author

Pertidaksamaan linier dua variabel yaitu suatu pertidaksamaan yang memuat dua variabel dengan pangkat tertinggi satu. Penyelesaian dari pertidaksamaa linier dua variabel ini merupakan gambar daerah pada grafik Catesius sumbu-XY yang dibatasi oleh suatu garis linier Untuk lebih jelasnya ikutilah contoh soal berikut ini 01. Tentukanlah daerah penyelesaian pertidaksamaan linier 2x + y ≤ 6, dengan x dan y anggota real. Jawab Pertama kita lukis garis 2x + y = 6 dengan bantuan tabel. Selanjutnya diambil satu titik sembarang sebagai titik uji, misalnya O0, 0, sehingga diperoleh 20 + 0 = 0 ≤ 6 Jadi himpunan penyelesaiannya adalah daerah bagian kiri bawah garis 2x + y = 6. Jika beberapa pertidaksamaan linier bergabung dalam satu sistem, maka bentuk tersebut dinamakan sistem pertidaksamaan linier, dimana himpunan penyelesaiannya merupakan irisan dari daerah penyelesaian masing-masing pertidaksamaan linier. Untuk pemahaman lebih lanjut akan diuraikan pada contoh soal berikut ini 02. Tentukanlah daerah penyelesaian dari sistem pertidaksamaan linier 2x + 3y ≤ 12 , x ≥ 1 , y ≥ 1 Jawab Pertama akan dilukis garis 2x + 3y = 6, garis x= 1 dan garis y = 1 ke dalam satu tatanan koordinat Cartesius Himpunan penyelesaiannya adalah daerah segitiga yang bebas dari arsiran 02. Tentukanlah daerah penyelesaian dari sistem pertidaksamaan linier ; 2x + y ≤ 8 , 4x + 5y ≤ 20 , x ≥ 0 , y ≥ 0 Jawab Pertama akan dilukis garis 2x + y = 8 dan garis 4x + 5y = 20 ke dalam satu tatanan koordinat Cartesius Himpunan penyelesaiannya adalah daerah segiempat yang bebas dari arsiran 03. Tentukanlah sistem pertidaksamaan untuk dearah yang diarsir pada gambar di bawah ini. Untuk menentukan sistem pertidaksamaan pada gambar di atas, harus ditentukan terlebih dahulu persamaan garis lurus yang menjadi batas-batas daerahnya, yakni dengan menggunakan rumus Sehingga sistem pertidaksamaan linier untuk gambar di atas adalah 3x + 2y ≤ 12 x + 2y ≤ 8 x ≥ 0 y ≥ 0 Catatan Jika kedua titik yang terletak pada garis lurus tersebut, diketahui berada pada sumbu-X dan sumbu-Y, 04. Tentukanlah sistem pertidaksamaan untuk dearah yang diarsir pada gambar di bawah ini. Jawab Persamaan garis yang melalui titik 4,0 dan 0, 3 adalah Persamaan garis yang melalui titik 4,0 dan 0, -2 adalah Sehingga sistem pertidaksamaan linier untuk gambar di atas adalah 3x + 4y ≤ 12 x – 2y ≤ 4 x ≥ 0 Dalam kehidupan sehari-hari, banyak sekali masalah-masalah yang penyelesaiannya menggunakan sistem pertidaksamaan linier ini. Proses menyelesaikan masalah sehari-hari dengan menggunakan sistem pertidaksamaan linier ini dinamakan Program Linier. Tentu saja, tahap awal proses ini adalah mengubah informasi informasi dalam soal cerita menjadi suatu sistem pertidaksamaan linier. Tahap ini dinamakan tahap menyusun model matemetika. Setelah itu digambar daerah penyelesaian dari sistem pertidaksamaan linier yang telah diperoleh. Untuk lebih jelasnya ikutilah contoh soal berikut ini. 05. Suatu jenis makanan ternak membutuhkan 5 kg daging dan 3 kg tepung. Makanan ternak jenis lain membutuhkan 6 kg daging dan 8 kg tepung. Jika tersedia daging 60 kg dan tepung 48 kg, sedangkan bahan yang lain cukup tersedia, maka Gambarlah daerah penyelesaian sistem pertidaksamaan liniernya. Jawab Misalkan x = banyaknya makanan ternak jenis pertama y = banyaknya makanan ternak jenis kedua maka model matemaikanya dapat ditentukan dengan bantuan tabel Dari tabel di atas dapat disusun sistem pertidaksamaan liniernya, yakni 5x + 6y ≤ 60 3x + 8y ≤ 48 x ≥ 0 y ≥ 0 Selanjutnya digambar daerah penyelesaiannya ke dalam koordinat Cartesius Himpunan penyelesaiannya adalah daerah segiempat yang bebas dari arsiran. 09. Seorang pedagang mainan ingin membeli mainan untuk persediaan di tokonya maksimum 100 paket. Mainan yang akan dibeli adalah jenis A dengan harga Rp perpaket dan jenis B seharga Rp. perpaket. Uang yang tersedia untuk modal adalah Rp. Gambarlah daerah penyelesaian sistem pertidaksamaan liniernya agar keuntungannya makasimum Jawab Misalkan x = banyaknya mainan jenis A y = banyaknya mainan jenis B maka sistem pertidaksamaannya dapat ditentukan sebagai berikut x + y ≤ 100 .................................... x + y ≤ 100 6000x + 8000y ≤ 720000 ...............3x + 4y ≤ 360 x ≥ 0 y ≥ 0 Selanjutnya digambar daerah penyelesaiannya ke dalam koordinat Cartesius

SISTEMPERTIDAKSAMAAN KINEAR DUA VARIABEL a. 1. Gambarkan daerah penyelesaian : x +y S4 3x + y 18 x > 0 yo b. 4x + 3y 12; 2x + 5y 10:* 0; y 30 - on Gambarkan daerah penyelesaian : x +y S4 3x + y 18 x > 0 yo b. 4x + 3y 12; 2x + 5y 10:* 0; y 30. Jawaban: 1 Buka kunci jawaban. Jadi (x, y) =(2, 4) Maaf kalo
MatematikaALJABAR Kelas 11 SMAProgram LinearPertidaksamaan Linear Dua VariabelDaerah penyelesaian dari sistem pertidaksamaan x>=0, y>=0, 2x+y=15, 3...0223Gambarlah himpunan penyelesaian pertidaksamaan bidang Car...Teks videoJika menemukan soal seperti ini kita perlu menggambar grafiknya terlebih dahulu pada soal kita punya daerah penyelesaian dari sistem pertidaksamaan terletak pada X lebih dari sama dengan 0 dan Y lebih dari sama dengan nol ini artinya daerah penyelesaian berada pada sumbu x positif gabungan 0 dan sumbu y gabungan no. Selanjutnya di sini kita punya dua garis garis yang pertama yaitu 2 x + y = 8 Kemudian yang kedua yaitu X + 3y = 9pada garis yang pertama ketika x = 0 kita punya y = 8 dan ketika y = 0 kita punya x = 4 dengan demikian garis L1 melalui titik 0,8 dan 4,0 yang jika digambarkan akan seperti iniselanjutnya pada soal kita punya pertidaksamaan yaitu 2 X + Y kurang dari sama dengan 8 oleh karena itu kita perlu menentukan daerah penyelesaian dari pertidaksamaan ini dengan cara mengambil titik uji pada daerah yang berada di bawah garis di sini aku ambil titik uji 0,0 sehingga ketika disubstitusikan diperoleh 0 kurang dari = 8 dengan daerah penyelesaian dari pertidaksamaan ini adalah daerah yang berada di bawah garis Kemudian pada garis L2 kita punya ketika x = 0 maka y = 3 kemudian ketika y = 0 kita punya Xdengan 9 dengan demikian garis L2 melalui titik 0,3 dan 9,0 yang jika digambarkan akan menjadi seperti ini selanjutnya pada soal kita punya x + 3 Y kurang dari sama dengan 9 Oleh karena itu kita perlu menentukan daerah penyelesaian dari pertidaksamaan ini terlebih dahulu dengan cara melakukan uji titik pada bagian bawah garis di sini. Aku akan melakukan uji titik di 0,0 sehingga diperoleh 0 ditambah 3 dikali 0 sama dengan 0 kurang dari sama dengan 9 dengan demikian daerah penyelesaian dari pertidaksamaan ini adalah daerah yang berada di bawah garis singgah daerah penyelesaian dari sistem pertidaksamaan ini adalah daerah yang merupakan irisan Dari keempat daerah penyelesaian pertidaksamaan yaitu daerah ini dengan demikian jawabannya adalah B sampai jumpa di soal selanjutnya
kB2K5FA.